Web-Site-Based Partitioning Techniques for Reducing the Preprocessing Overhead before the Parallel PageRank Computations
نویسندگان
چکیده
The efficiency of the PageRank computation is important since the constantly evolving nature of the Web requires this computation to be repeated many times. Due to the enormous size of the Web’s hyperlink structure, PageRank computations are usually carried out on parallel computers. Recently, a hypergraph-partitioning-based formulation for parallel sparse-matrix vector multiplication is proposed as a preprocessing step which will minimize the communication overhead of the parallel PageRank computations. Based on this work, we propose Website-based partitioning approaches in order to reduce the overhead of this preprocessing step. The conducted experiments show that the proposed approach produces comparable performance results for PageRank computation while achieving lower preprocessing overheads.
منابع مشابه
Web-Site-Based Partitioning Techniques for Efficient Parallelization of the PageRank Computation
The efficiency of the PageRank computation is important since the constantly evolving nature of the Web requires this computation to be repeated many times. PageRank computation includes repeated iterative sparse matrix-vector multiplications. Due to the enourmous size of the Web matrix to be multiplied, PageRank computations are usually carried out on parallel systems. Graph and hypergraph par...
متن کاملA Web-Site-Based Partitioning Technique for Reducing Preprocessing Overhead of Parallel PageRank Computation
A power method formulation, which efficiently handles the problem of dangling pages, is investigated for parallelization of PageRank computation. Hypergraph-partitioning-based sparse matrix partitioning methods can be successfully used for efficient parallelization. However, the preprocessing overhead due to hypergraph partitioning, which must be repeated often due to the evolving nature of the...
متن کاملHypergraph Partitioning for Faster Parallel PageRank Computation
The PageRank algorithm is used by search engines such as Google to order web pages. It uses an iterative numerical method to compute the maximal eigenvector of a transition matrix derived from the web’s hyperlink structure and a user-centred model of web-surfing behaviour. As the web has expanded and as demand for user-tailored web page ordering metrics has grown, scalable parallel computation ...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملParallel algorithms for hypergraph partitioning
Near-optimal decomposition is central to the efficient solution of numerous problems in scientific computing and computer-aided design. In particular, intelligent a priori partitioning of input data can greatly improve the runtime and scalability of large-scale parallel computations. Discrete data structures such as graphs and hypergraphs are used to formalise such partitioning problems, with h...
متن کامل